-->
March31,2021
Q: 求斐波那契数列的通项公式 $$ F\_{n+2} = F\_{n+1} + F\_{n},F\_0=0,F\_1=1 $$ A: $$ F\_n=\frac{1}{\sqrt{5}}\[(\frac{1+\sqrt{5}}{2...
March13,2021
Q: 第一代计算机 A: 电子管计算机 Q: 第二代计算机 A: 晶体管计算机 Q: 第三代计算机 A: 中小规模集成电路计算机 Q: 第四代计算机 A: 超大规模集成电路计算机 Q: 电子计算机发展已经历 4 代,这四代计...
March11,2021
Q: 若 V 是在数域 F 上的线性空间,则满足 A: $$ \begin{cases} \alpha+\beta=\beta+\alpha \\ (\alpha+\beta)+\gamma=\alpha+(\beta+\gamma) ...
March10,2021
Q: $\lambda=2$是非奇异矩阵 A 的一个特征值,则$(\frac{1}{3}A^2)^{-1}$的特征值是 A: $\frac{3}{4}$ Q: A 是 n 阶实对称矩阵,P 是 n 阶可逆矩阵,已知 n 维列向量$\a...
March09,2021
Q: $$ f(x\_1,x\_2,x\_3)=x\_1^2+3x\_2^2-2x\_3^2+8x\_1x\_2-10x\_2x\_3 $$ 求二次型矩阵及其秩 A: $$ A=\begin{pmatrix} 1 & 4 & 0 \...
March08,2021
Q: $$ \begin{cases} \lambda\_1=3, \alpha\_1=(1,2,-1)^T \\ \lambda\_2=2, \\ \lambda\_2=2, \\ \end{cases} $$ 求 A 属于 2 的特...
Q: A~B,则$A^2\sim B^2$ A: 正确 Q: $$ A\_1 \sim A\_2, B\_1 \sim B\_2 \rightarrow \begin{pmatrix} A\_1 & O \\ O & B\_1 \\ ...
March07,2021
Q: $$ \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \\ \end{pmatrix} $$ 求特征值和特征向量 A: $$ \begin{cases} \lambd...
March06,2021
Q: $$ \alpha=(1,0,-2)^T,\beta=(-4,2,3)^T, \beta=k\alpha+\gamma $$ alpha 和 gamma 正交,求 k 和 gamma A: $$ k=-2,\gamma=(-2...
March05,2021
Q: $$ \begin{cases} \lambda x\_1 + x\_2 + x\_3 = \lambda -3 \\ x\_1 + \lambda x\_2 + x\_3 = -2 \\ x\_1 + x\_2 + \lambda...
March04,2021
Q: $$ A=\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ \end{pmatrix} $$ 与 A 可交换的全体二阶矩阵 A: $$ \begin{pmatrix} k\_1 & k\_2 \\ 0 & k...
March03,2021
Q: $$ \begin{cases} x\_1 + 2x\_3 + 2x\_4 = 6 \\ 2x\_1 + x\_2 + 3x\_3 + 7x\_4 = 0 \\ 3x\_1+7x\_3+5x\_4 = 24 \\ \end{case...
March01,2021
Q: $$ \begin{cases} 6x\_1+2x\_2-2x\_3+x\_4=0 \\ x\_1-x\_3+x\_4 = 0 \\ 2x\_1+x\_2+3x\_4 = 0 \\ \end{cases} $$ 求基础解系 A:...