Latex cheat sheet

\sum_{i=1}^{k+1}i
i=1k+1i\sum_{i=1}^{k+1}i
\frac{k(k+1)}{2} + k + 1
k(k+1)2+k+1\frac{k(k+1)}{2} + k + 1
1 + \frac{q^2}{(1-q)} + \frac{q^6}{(1-q)(1-q^2)} + \cdots
=
\prod^{\infty}_{j=0}
\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}
\text{, for }
\lvert q \rvert < 1
1+q2(1q)+q6(1q)(1q2)+=j=01(1q5j+2)(1q5j+3), for q<11 + \frac{q^2}{(1-q)} + \frac{q^6}{(1-q)(1-q^2)} + \cdots = \prod^{\infty}_{j=0} \frac{1}{(1-q^{5j+2})(1-q^{5j+3})} \text{, for } \lvert q \rvert < 1
\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega
ΓΔΘΛΞΠΣΥΦΨΩ\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega
\alpha \beta \gamma \delta \epsilon \eta \theta \mu \nu \xi
αβγδϵηθμνξ\alpha \beta \gamma \delta \epsilon \eta \theta \mu \nu \xi
\int u \frac{dy}{dx} dx = uv - \int \frac{du}{dx}v dx
udydxdx=uvdudxvdx\int u \frac{dy}{dx} dx = uv - \int \frac{du}{dx}v dx
\mathbf{V}_1 \times \mathbf{V}_2
=
\begin{vmatrix}
    i & j & k \\
    \frac{\partial{X}}{\partial{u}} & \frac{\partial{Y}}{\partial{u}} & 0 \\
    \frac{\partial{X}}{\partial{v}} & \frac{\partial{Y}}{\partial{v}} & 0 \\
\end{vmatrix}
V1×V2=ijkXuYu0XvYv0\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} i & j & k \\ \frac{\partial{X}}{\partial{u}} & \frac{\partial{Y}}{\partial{u}} & 0 \\ \frac{\partial{X}}{\partial{v}} & \frac{\partial{Y}}{\partial{v}} & 0 \\ \end{vmatrix}
\left(
    \frac{x^2}{y^3}
\right)
(x2y3)\left( \frac{x^2}{y^3} \right)
f(n) =
\begin{cases}
    \frac{n}{2}, \text{if } n \text{ is even} \\
    3n + 1, \text{if} n \text{is odd}
\end{cases}
f(n)={n2,if n is even3n+1,ifnis oddf(n) = \begin{cases} \frac{n}{2}, \text{if } n \text{ is even} \\ 3n + 1, \text{if} n \text{is odd} \end{cases}
\sqrt[n]{1 + x + x + x^2 + x^3 + \ldots}
1+x+x+x2+x3+n\sqrt[n]{1 + x + x + x^2 + x^3 + \ldots}
\begin{pmatrix}
    a_{11} & a_{12} & a_{13}\\
    a_{21} & a_{22} & a_{23}\\
    a_{31} & a_{32} & a_{33}\\
\end{pmatrix}
(a11a12a13a21a22a23a31a32a33)\begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\\ \end{pmatrix}
\begin{bmatrix}
    0      & \cdots & 0      \\
    \vdots & \ddots & \vdots \\
    0      & \cdots & 0      \\
\end{bmatrix}
[0000]\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \\ \end{bmatrix}