Latex cheat sheet
\sum_{i=1}^{k+1}i
i=1∑k+1i
\frac{k(k+1)}{2} + k + 1
2k(k+1)+k+1
1 + \frac{q^2}{(1-q)} + \frac{q^6}{(1-q)(1-q^2)} + \cdots
=
\prod^{\infty}_{j=0}
\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}
\text{, for }
\lvert q \rvert < 1
1+(1−q)q2+(1−q)(1−q2)q6+⋯=j=0∏∞(1−q5j+2)(1−q5j+3)1, for ∣q∣<1
\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega
ΓΔΘΛΞΠΣΥΦΨΩ
\alpha \beta \gamma \delta \epsilon \eta \theta \mu \nu \xi
αβγδϵηθμνξ
\int u \frac{dy}{dx} dx = uv - \int \frac{du}{dx}v dx
∫udxdydx=uv−∫dxduvdx
\mathbf{V}_1 \times \mathbf{V}_2
=
\begin{vmatrix}
i & j & k \\
\frac{\partial{X}}{\partial{u}} & \frac{\partial{Y}}{\partial{u}} & 0 \\
\frac{\partial{X}}{\partial{v}} & \frac{\partial{Y}}{\partial{v}} & 0 \\
\end{vmatrix}
V1×V2=i∂u∂X∂v∂Xj∂u∂Y∂v∂Yk00
\left(
\frac{x^2}{y^3}
\right)
(y3x2)
f(n) =
\begin{cases}
\frac{n}{2}, \text{if } n \text{ is even} \\
3n + 1, \text{if} n \text{is odd}
\end{cases}
f(n)={2n,if n is even3n+1,ifnis odd
\sqrt[n]{1 + x + x + x^2 + x^3 + \ldots}
n1+x+x+x2+x3+…
\begin{pmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\\
\end{pmatrix}
a11a21a31a12a22a32a13a23a33
\begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0 \\
\end{bmatrix}
0⋮0⋯⋱⋯0⋮0