错题整理
y=f(x)=ln(x+x2+1)
求f−1(x)
答
−y=−ln(x+x2+1);=lnx+x2+11;=ln(x+x2+1)(x−x2+1)x−x2+1;=ln(x2+1−x);ey=x2+1+x;e−y=x2+1−x;ey−e−y=2x;y=f−1(x)=2ex−e−x
证明f(x)=1+x2x在无穷域下有界
x=0,f(0)=0;x=0,∣f(x)∣=∣x∣1+∣x∣1;∣x∣1+∣x∣≤2∣x∣1⋅∣x∣=2;∣f(x)∣≤21
lnx=1,x=e2
lnx=0,x=1
证明 limn→∞[1+n(−1)n]=1
- 令N=ϵ1+1
- n>N→n>ϵ1
- 即∣1+n(−1)n−1∣<ϵ
- limn→∞[1+n(−1)n]=1
求
a1=a,an+1=21(an+an2);n→∞liman
证明
an+1=21(an+an2)≥an⋅an2=2;an+1−an=an2−an2≤0→{an}↓;n→∞liman=A;n→∞liman+1=n→∞lim21(an+an2)→A=21(A+A2)→A=2
求
A=n→∞limi=1∑nn2+i1
解
1=n→∞limn2+nn≤A≤n→∞limn2+1n=1
A=n→∞limi=1∑nn2+n+ii
21=n→∞lim2(n2+n+n)n(n+1)<A<n→∞lim2(n2+n+1)n(n+1)=21
an=i→n∑nn21
证明{an}收敛
an+1−an=(n+1)21>0→{an}↑;an<1+1⋅21+2⋅31+⋯+(n−1)⋅n1;=1+1−21+21−31+⋯−n1;=2−n1<2
求
a0=0,a1=1,2an+1=an+an−1,;limn→∞an
an+1−an=(−21)(an−an−1);=(−21)n;an=an−an−1+an−1−⋯+a1−a0+a0;=(−21)n−1+(−21)n−2+⋯(−21)0;=1−(−21)1−(−21)n;=A;limn→∞A=32