重要公式

倍角公式

sin2α=2sinαcosαcos2α=cos2αsin2αcos2α=12sin2αcos2α=2cos2α1sin3α=4sin3α+3sinαcos3α=4cos3α3cosαtan2α=2tanα1tan2αcot2α=cot2α12cotα\sin2\alpha = 2\sin\alpha\cos\alpha \\ \cos2\alpha = \cos^2\alpha-\sin^2\alpha \\ \cos2\alpha = 1-2\sin^2\alpha \\ \cos2\alpha = 2\cos^2\alpha-1 \\ \sin3\alpha = -4sin^3\alpha + 3\sin\alpha \\ \cos3\alpha = 4cos^3\alpha - 3\cos\alpha \\ \tan2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha} \\ \cot2\alpha = \frac{\cot^2\alpha - 1}{2\cot\alpha}

半角公式

sin2α2=12(1cosα)cos2α2=12(1cosα)sinα2=±1cosα2cosα2=±1+cosα2tanα2=1cosαsinαtanα2=sinα1+cosαtanα2=±1cosα1+cosαcotα2=1+cosαsinαcotα2=sinα1cosαcotα2=±1+cosα1cosα\sin^2 \frac{\alpha}{2} = \frac{1}{2} (1-\cos \alpha) \\ \cos^2 \frac{\alpha}{2} = \frac{1}{2} (1-\cos \alpha) \\ \sin \frac{\alpha}{2} = \pm \sqrt{\frac{1-\cos\alpha}{2}} \\ \cos \frac{\alpha}{2} = \pm \sqrt{\frac{1+\cos\alpha}{2}} \\ \tan \frac{\alpha}{2} = \frac{1-\cos\alpha}{\sin\alpha} \\ \tan \frac{\alpha}{2} = \frac{\sin\alpha}{1 + \cos\alpha} \\ \tan \frac{\alpha}{2} = \pm \sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} \\ \cot \frac{\alpha}{2} = \frac{1+\cos\alpha}{\sin\alpha} \\ \cot \frac{\alpha}{2} = \frac{\sin\alpha}{1 - \cos\alpha} \\ \cot \frac{\alpha}{2} = \pm \sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} \\

和差公式

sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβsinαsinβtan(α±β)=tanα±tanβ1tanαtanβcot(α±β)=cotαcotβ1cotβ±cotα\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta \\ \cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta \\ \tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta} \\ \cot(\alpha \pm \beta) = \frac{\cot\alpha\cot\beta \mp 1}{\cot\beta \pm \cot\alpha}

积化和差

sinαcosβ=12[sin(α+β)+sin(αβ)]cosαsinβ=12[sin(α+β)sin(αβ)]cosαcosβ=12[cos(α+β)+cos(αβ)]sinαsinβ=12[cos(α+β)cos(αβ)]\sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)] \\ \cos\alpha\sin\beta = \frac{1}{2}[\sin(\alpha + \beta) - \sin(\alpha - \beta)] \\ \cos\alpha\cos\beta = \frac{1}{2}[\cos(\alpha+\beta) + \cos(\alpha-\beta)] \\ \sin\alpha\sin\beta = - \frac{1}{2}[\cos(\alpha+\beta) - \cos(\alpha-\beta)]

和差化积

口口之和仍口口 赛赛之和赛口留 口口之差负赛赛 赛赛之差口塞收

cosα+cosβ=2cosα+β2cosαβ2sinα+sinβ=2sinα+β2cosαβ2cosαcosβ=2sinα+β2sinαβ2sinαsinβ=2cosα+β2sinαβ2\cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \sin\alpha + \sin\beta = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos\alpha - \cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \sin\alpha - \sin\beta = 2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\

万能公式

sin2x=2tanx1+tan2xcos2x=1tan2x1+tan2x\sin 2x = \frac{2\tan x}{1+\tan^2 x} \\ \cos 2x = \frac{1-\tan^2 x}{1+\tan^2 x}

对数运算法则

logaMN=logaM+logaNlogaMN=logaMlogaNlogaMn=nlogaMlogaMn=1nlogaM\log_a{MN} = \log_aM + \log_aN \\ \log_a{\frac{M}{N}} = \log_aM - \log_aN \\ \log_a{M^n} = n\log_aM \\ \log_a{\sqrt[n]{M}} = \frac{1}{n}\log_aM

一元二次方程

根的公式b±b24ac2a\frac{-b \pm \sqrt{b^2-4ac}}{2a}

韦达定理

x1+x2=bax1x2=cax_1+x_2=-\frac{b}{a} \\ x_1x_2=\frac{c}{a}

抛物线顶点 (b2a,cb24a)(-\frac{b}{2a}, c-\frac{b^2}{4a})

因式分解

(a+b)2=a2+2ab+b2(ab)2=a22ab+b2(a+b)3=a3+3a2b+3ab2+b3(ab)3=a33a2b+3ab2b3a2b2=(a+b)(ab)a3b3=(ab)(a2+b2+ab)a3+b3=(a+b)(a2+b2ab)anbn=(ab)(an1+an2b++abn2+bn1)a2nb2n=(a+b)(a2n1a2n2b++ab2n2b2n1)a2n+1+b2n+1=(a+b)(a2na2n1b+ab2n1+b2n)(a+b)n=k=0nCnkankbk(a+b)^2 = a^2 + 2ab + b^2 \\ (a-b)^2 = a^2 - 2ab + b^2 \\ (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \\ (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \\ a^2 - b^2 = (a+b)(a-b) \\ a^3 - b^3 = (a-b)(a^2 + b^2 + ab) \\ a^3 + b^3 = (a+b)(a^2 + b^2 - ab) \\ a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + \cdots + ab^{n-2} + b^{n-1}) \\ a^{2n} - b^{2n} = (a+b)(a^{2n-1} - a^{2n-2}b + \cdots + ab^{2n-2} - b^{2n-1}) \\ a^{2n+1} + b^{2n+1} = (a+b)(a^{2n} - a^{2n-1}b + \cdots - ab^{2n-1} + b^{2n}) \\ (a+b)^n = \sum^n_{k=0} C^k_n a^{n-k}b^k

杨辉三角

C32=3C42=6C^2_3 = 3 \\ C^2_4 = 6 \\

阶乘双阶乘

0!=1(2n)!!=2nn!(2n1)!!=135(2n1)0π2sin10xdx=91078563412π20π2cos9xdx=896745230! = 1 \\ (2n)!! = 2^nn! \\ (2n-1)!! = 1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1) \\ \int^{\frac{\pi}{2}}_0 \sin^10 x dx = \frac{9}{10} \cdot \frac{7}{8} \cdot \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} \\ \int^{\frac{\pi}{2}}_0 \cos^9 x dx = \frac{8}{9} \cdot \frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3}

常用不等式

a±ba+babababf(x)dxabf(x)dxaba+b2a2+b22a>b,n>0,an>bna>b,n<0,an<bnsinx<x<tanxarctanxxarcsinxexx+1x1lnx11+x<ln(1+1x)<1x|a \pm b| \le |a| + |b| \\ ||a| - |b|| \le |a-b| \\ |\int^b_a f(x) dx| \le \int^b_a |f(x)| dx \\ \sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}} \\ a>b,n>0,a^n > b^n \\ a>b,n<0,a^n < b^n \\ \sin x < x < \tan x \\ \arctan x \le x \le \arcsin x \\ e^x \ge x+1 \\ x-1 \ge \ln x \\ \frac{1}{1+x} < \ln(1 + \frac{1}{x}) < \frac{1}{x}